Khoảng cách giữa hai đường thẳng chéo nhau – Thầy Phạm Quốc Vượng

Bạn đang xem video Khoảng cách giữa hai đường thẳng chéo nhau – Thầy Phạm Quốc Vượng được dạy bởi giáo viên online nổi tiếng

  • 3 Bước HACK điểm cao
  • Bước 1: Nhận miễn phí khóa học Chiến lược học giỏi (lớp 12) | Các lớp khác
  • Bước 2: Xem bài giảng tại Baigiang365.vn
  • Bước 3: Làm bài tập và thi online tại Tuhoc365.vn
Khoảng cách giữa hai đường thẳng chéo nhau - Thầy Phạm Quốc Vượng
  • Đánh giá:
  • Tips: Để học hiệu quả bài giảng: Khoảng cách giữa hai đường thẳng chéo nhau – Thầy Phạm Quốc Vượng bạn hãy tập trung và dừng video để làm bài tập minh họa nhé. Chúc bạn học tốt tại Baigiang365.vn

    A. Bài giảng

    B. Câu hỏi

    Câu 1

    Nhận biết

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh \(a.\) Cạnh bên \(SA = \dfrac{{a\sqrt {15} }}{2}\) và vuông góc với mặt đáy \(\left( {ABCD} \right).\) Tính khoảng cách \(d\) từ \(O\) đến mặt phẳng \(\left( {SBC} \right).\)

    a. $d = \dfrac{{a\sqrt {285} }}{{19}}.$ 
    b. $d = \dfrac{{\sqrt {285} }}{{38}}.$
    c. $d = \dfrac{{a\sqrt {285} }}{{38}}.$
    d. \(d = \dfrac{{a\sqrt 2 }}{2}.\)

    Câu 2

    Nhận biết

    Hình chóp đều $S.ABC$ có cạnh đáy bằng $3a,$ cạnh bên bằng $2a$. Gọi \(H\) là trung điểm của \(BC\), khoảng cách từ $S$ đến \(AH\) bằng:


    a. \(2a.\) 
    b. \(a\sqrt 3 .\) 
    c. \(a.\) 
    d. \(a\sqrt 5 .\) 

    Câu 3

    Vận dụng cao

    Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $BC = a$. Cạnh bên $SA$ vuông góc với đáy, góc $\widehat {SCA} = \widehat {BSC} = {30^0}$. Gọi $M$ là trung điểm của $CD$. Tính khoảng cách từ $D$ đến mặt phẳng $\left( {SAM} \right)$.

    a. $\dfrac{a}{{\sqrt 3 }}.$ 
    b. $\dfrac{{2a}}{{\sqrt 3 }}.$
    c. $\dfrac{a}{3}.$
    d. $\dfrac{{2a}}{{\sqrt 3 }}.$

    C. Lời giải

    Đáp án câu 1

    c

    Phương pháp giải

    Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng

    Đáp án chi tiết:

    Ta có : \(OA \cap \left( {SBC} \right) = C \Rightarrow \dfrac{{d\left( {O;\left( {SBC} \right)} \right)}}{{d\left( {A;\left( {SBC} \right)} \right)}} = \dfrac{{OC}}{{AC}} = \dfrac{1}{2}\)

    Do đó $d\left( {O;\left( {SBC} \right)} \right) = \dfrac{1}{2}d\left( {A;\left( {SBC} \right)} \right).$

    Gọi $K$ là hình chiếu của $A$ trên $SB$$ \Rightarrow $$AK \bot SB\,\,\,\left( 1 \right)$.

    Ta có: \(\left\{ \begin{array}{l}BC \bot SA\\BC \bot AB\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AK\,\,\,\,\,\left( 2 \right)\)

    Từ (1) và (2) \( \Rightarrow AK \bot \left( {SBC} \right) \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AK\) 

    Tam giác vuông SAB, có $AK = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}}.$

    Vậy $d\left( {O;\left( {SBC} \right)} \right) = \dfrac{1}{2}AK = \dfrac{{a\sqrt {285} }}{{38}}.$

    Đáp án cần chọn là: c

    Đáp án câu 2

    c

    Phương pháp giải

    – Dựng hình chiếu của \(S\) trên mặt đáy.

    – Chứng minh khoảng cách cần tìm chính là khoảng cách từ \(S\) lên mặt đáy.

    Đáp án chi tiết:

    Gọi \(O\) là chân đường cao của hình chóp nên \(O\) là tâm tam giác đáy.

    Do đó \(O\) là trọng tâm tam giác \(ABC\) hay \(O \in AH\)

    Ta có \(AO = \dfrac{2}{3}AH = \dfrac{2}{3}.3a.\dfrac{{\sqrt 3 }}{2} = a\sqrt 3 \)

    ${\rm{d}}\left( {S,AH} \right) = SO = \sqrt {S{A^2} – A{O^2}}  = a$

    Đáp án cần chọn là: c

    Đáp án câu 3

    a

    Phương pháp giải

    Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng

    Đáp án chi tiết:

    Đặt $AB = x \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{x^2} + {a^2}}  \Rightarrow $$SA = AC.\tan \widehat {SCA} = \sqrt {\dfrac{{{x^2} + {a^2}}}{3}} .$

    Ta có : \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB \Rightarrow \Delta SBC\) vuông tại $B,$ có $SB = \dfrac{{BC}}{{\tan \widehat {BSC}}} = a\sqrt 3 .$

    Tam giác $SAB$ vuông tại $A,$ có $S{A^2} + A{B^2} = S{B^2}$.

    $ \Rightarrow \dfrac{{{x^2} + {a^2}}}{3} + {x^2} = 3{a^2} \Leftrightarrow 4{x^2} = 8{a^2} \Leftrightarrow x = a\sqrt 2 .$

    Kẻ $DH \bot AM$, ta có $\left\{ \begin{array}{l}SA \bot DH\\AM \bot DH\end{array} \right. \Rightarrow DH \bot \left( {SAM} \right).$

    \( \Rightarrow d\left( {D;\left( {SAM} \right)} \right) = DH\)

    Xét $\Delta AMD$ vuông tại $D$, có $\dfrac{1}{{D{H^2}}} = \dfrac{1}{{A{D^2}}} + \dfrac{1}{{M{D^2}}} = \dfrac{3}{{{a^2}}}.$

    $ \Rightarrow DH = \dfrac{a}{{\sqrt 3 }} \Rightarrow d\left( {D;\left( {SAM} \right)} \right) = \dfrac{a}{{\sqrt 3 }}.$

    Đáp án cần chọn là: a

    Chúc mừng bạn đã hoàn thành bài học: Khoảng cách giữa hai đường thẳng chéo nhau – Thầy Phạm Quốc Vượng

    TÀI LIỆU CÙNG CHUYÊN ĐỀ


    THẦY NGÂN KỲ _ Khoảng cách từ một điểm đến một mặt phẳng – Phần 2

    Thầy Ngân Kỳ_Khoảng cách từ một điểm đến mặt phẳng Phần 1

    Giải bài 7 trang 120 (Khoảng cách) SGK Hình học 11

    Siêu Công Thức Tính Khoảng Cách Hai Đường Chéo Nhau (Không cần kẻ đường phụ)

    Khoảng Cách Điểm Đến Mặt Phẳng (P1)- Thầy Nguyễn Quốc Chí – Tuyensinh247

    [ĐTN] BÍ KÍP TÍNH KHOẢNG CÁCH TỪ MỘT ĐIỂM TỚI MỘT MẶT PHẲNG

    Giải Trắc Nghiệm Khoảng Cách Hình Không Gian – Thầy Nguyễn Quốc Chí

    [ĐTN] VIDEO KHOẢNG CÁCH GIỮA HAI ĐƯỜNG CHÉO NHAU

    Khoảng cách từ một điểm đến một mặt phẳng P2- thầy Phạm Quốc Vượng

    Toán 11- Kiểm Tra 45 Phút Hình Chương 3 – Phần Trắc Nghiệm ( đề 01)

    No Comments

      Leave a Reply